Ogólna teoria względności i jej potwierdzenie

Ogólna teoria względności zmierza do formułowania praw fizycznych dla wszystkich u. w. Podstawowym zagadnieniem teorii jest zagadnienie ciążenia. Po raz pierwszy od czasów Newtona podjęto poważną próbę nowego sformułowania prawa ciążenia. Czy to jest rzeczywiście potrzebne? Zapoznaliśmy się już z osiągnięciami teorii Newtona, z wielkim rozwojem astronomii opartej na jego prawie ciążenia. Prawo Newtona nadal pozostaje podstawą wszystkich obliczeń astronomicznych. Ale spotkaliśmy się też z pewnymi zastrzeżeniami wobec starej teorii. Prawo Newtona obowiązuje tylko w inercjalnym u. w. fizyki klasycznej, w u. w. określonym, jak pamiętamy, przez warunek, że muszą w nim obowiązywać prawa mechaniki. Siła działająca między dwiema masami zależy od ich wzajemnej odległości. Wiemy, że związek między siłą a odległością jest niezmienny względem transformacji klasycznej. Prawo to nie da się jednak pogodzić ze szczególną teorią względności. Odległość nie jest niezmienna względem transformacji Lorentza. Moglibyśmy próbować, jak to z powodzeniem uczyniliśmy z prawami ruchu, uogólniać prawo ciążenia, tak by było ono zgodne ze szczególną teorią względności, czyli - innymi słowy - nadać mu postać niezmienną względem transformacji Lorentza, a nie względem transformacji klasycznej. Ale newtonowskie prawo ciążenia uporczywie opierało się wszelkim próbom uproszczenia i uzgodnienia go ze szczególną teorią względności. Nawet gdyby się to nam udało, konieczny byłby jeszcze dalszy krok: przejście od inercjalnego u. w. szczególnej teorii względności do dowolnego u. w. ogólnej teorii względności. Z drugiej strony, wyidealizowane doświadczenia ze spadającą windą jasno wykazują, że nie ma nadziei na sformułowanie ogólnej teorii względności bez rozwiązania zagadnienia ciążenia. Z naszego wywodu widać, dlaczego rozwiązanie zagadnienia ciążenia w ogólnej teorii względności będzie inne niż w fizyce klasycznej.

Staraliśmy się wskazać drogę wiodącą do ogólnej teorii względności i przyczyny, które zmuszają nas do ponownej zmiany uprzednich poglądów. Nie wnikając w formalną strukturę teorii, scharakteryzujemy pewne cechy nowej teorii ciążenia w porównaniu ze starą. W świetle tego, cośmy dotąd powiedzieli, uchwycenie istoty tych różnic nie powinno być zbyt trudne.

Równania grawitacyjne ogólnej teorii względności można stosować w dowolnym u. w. Wybór - w specjalnym przypadku - jakiegoś szczególnego u. w. jest tylko kwestią wygody. Teoretycznie dopuszczalne są wszystkie u. w. Gdy nie bierzemy pod uwagę ciążenia, powracamy automatycznie do inercjalnego u. w. szczególnej teorii względności.

Newtonowskie prawo ciążenia wiąże ruch ciała tu i teraz z działaniem innego ciała w tej samej chwili, na znacznej odległości. Na tym prawie opierał się cały pogląd mechanistyczny. Ale pogląd mechanistyczny upadł. W równaniach Maxwella odkryliśmy nowy model dla praw przyrody. Równania Maxwella są prawami struktury. Wiążą one zdarzenia zachodzące teraz i tu ze zdarzeniami, które zajdą trochę później w bezpośrednim sąsiedztwie. Mówiąc schematycznie, można by powiedzieć: przejście od newtonowskiego prawa ciążenia do ogólnej teorii względności przypomina w pewnym stopniu przejście od teorii płynów elektrycznych z prawem Coulomba do teorii Maxwella.

Nasz świat nie jest euklidesowy. Jego charakter geometryczny jest kształtowany przez masy i ich prędkości. Równania grawitacyjne ogólnej teorii względności starają się wykryć własności geometryczne naszego świata.

Przypuśćmy na chwilę, że udało nam się konsekwentnie przeprowadzić program ogólnej teorii względności. Czy jednak w naszych spekulacjach nie grozi nam niebezpieczeństwo zbytniego oddalenia się od rzeczywistości. Wiemy, jak dobrze stara teoria objaśnia obserwacje astronomiczne. Czy istnieje możliwość zbudowania pomostu między nową teorią a obserwacją- Każde rozumowanie musi być sprawdzone doświadczalnie, a wyniki niezgodne z faktami trzeba odrzucić, bez względu na ich atrakcyjność. Jak nowa teoria ciążenia przeszła próbę doświadczenia - Na to pytanie można odpowiedzieć jednym zdaniem: Stara teoria jest szczególnym, granicznym przypadkiem nowej. Stare prawo Newtona okazuje się, w przypadku słabych sił grawitacyjnych, dobrym przybliżeniem nowych praw ciążenia. Wszystkie obserwacje potwierdzają teorię klasyczną, potwierdzają więc zarazem ogólną teorię względności. Z wyższej poziomem nowej teorii uzyskujemy z powrotem starą.
Nawet gdyby na korzyść nowej teorii nie przemawiały żadne dodatkowe obserwacje, gdyby dawane przez nią wyjaśnienie było tylko równie dobre jak stare, musielibyśmy, mając możność swobodnego wyboru, wypowiedzieć się za nową teorią. Równania nowej teorii są z formalnego punktu widzenia bardziej złożone, ale ich założenia są z punktu widzenia podstawowych zasad o wiele prostsze. Zniknęły dwa straszące upiory - czas bezwzględny i układ inercjalny. Nie przeoczono tropu równoważności masy grawitacyjnej i bezwładnej. Nie potrzeba żadnych założeń co do sił ciążenia i ich zależności od odległości. Równania grawitacyjne mają postać praw struktury, czego od czasu wielkich osiągnięć teorii polowej wymagamy od wszystkich praw fizycznych.

Z nowych praw ciążenia można wyciągnąć pewne wnioski, których nie zawiera prawo ciążenia Newtona. Jeden z nich " zakrzywianie się promieni świetlnych w polu grawitacyjnym" wymieniliśmy już uprzednio. Teraz wspomnimy o dwóch dalszych konsekwencjach.

Jeśli stare prawa wynikają z nowych, gdy siły grawitacyjne są słabe, to odstępstw od newtonowskiego prawa ciążenia należy się spodziewać tylko w przypadku stosunkowo dużych sił grawitacyjnych. Weźmy nasz Układ Słoneczny. Planety, wśród nich nasza Ziemia, poruszają się wokół Słońca po torach eliptycznych. Planetą najbliższą Słońca jest Merkury. Przyciąganie między Słońcem a Merkurym jest silniejsze niż przyciąganie między Słońcem a jakąkolwiek inną planetą, gdyż jest tu mniejsza odległość. Jeżeli mamy nadzieję na wykrycie odstępstwa od prawa Newtona, to największe na to widoki istnieją w przypadku Merkurego. Z teorii klasycznej wynika, że tor opisywany przez Merkurego jest podobny do torów innych planet, tylko że bliższy Słońca. Według ogólnej teorii względności ruch powinien być nieco inny. Merkury powinien nie tylko obiegać Słońce, ale opisywana przezeń elipsa powinna jeszcze bardzo powoli obracać się względem u. w. związanego ze Słońcem. Ten obrót stanowi nowy efekt ogólnej teorii względności. Nowa teoria przepowiada wielkość tego efektu. Elipsa Merkurego wykonuje jeden pełny obrót w ciągu trzech milionów lat!

Odchylenie ruchu Merkurego od toru eliptycznego było znane przed sformułowaniem ogólnej teorii względności, ale nie potrafiono go w żaden sposób wyjaśnić. Z drugiej strony, ogólna teoria względności rozwijała się zupełnie niezależnie od tego szczególnego zagadnienia. Wniosek o obrocie elipsy w ruchu planety dokoła Słońca wyciągnięto z nowych równań grawitacyjnych dopiero później. W przypadku Merkurego teoria z powodzeniem wyjaśniła odstępstwo ruchu od prawa Newtona.

Istnieje jednak jeszcze jeden wniosek, który wyciągnięto z ogólnej teorii względności i porównano z doświadczeniem. Widzieliśmy już, że zegar umieszczony na dużym okręgu wirującego koła ma inny rytm niż zegar umieszczony na małym okręgu. Podobnie, z teorii względności wynika, że zegar umieszczony na Słońcu miałby inny rytm niż zegar umieszczony na Ziemi, gdyż wpływ pola grawitacyjnego jest na Słońcu znacznie silniejszy niż na Ziemi.
Wspomnieliśmy wcześniej, że rozżarzony sód wysyła jednorodne światło żółte o określonej długości fali. W tym promieniowaniu ujawnia się jeden z rytmów atomu; atom jest jak gdyby zegarem, a długość wysyłanej fali jest miarą jednego z jego rytmów. Według ogólnej teorii względności długość fali światła, wysyłanego przez atom sodu umieszczony na przykład na Słońcu, powinna być nieznacznie większa od długości fali światła, wysyłanego przez atom sodu na Ziemi.
Zagadnienie doświadczalnego sprawdzenia konsekwencji ogólnej teorii względności jest złożone i bynajmniej ostatecznie nie rozwiązane. Ponieważ zajmujemy się pojęciami podstawowymi, nie będziemy wnikać głębiej w tę kwestię i ograniczymy się do stwierdzenia, że wyrok doświadczenia zdaje się, jak dotąd, potwierdzać wnioski wyciągnięte z ogólnej teorii względności.

Pozostaje jeszcze do wyjaśnienia jeden punkt. Nie rozstrzygnęliśmy dotąd jednego z najbardziej podstawowych zagadnień: czy istnieje układ inercjalny- Dowiedzieliśmy się już coś nie coś o prawach przyrody, ich niezmienności względem transformacji Lorentza oraz ich ważności we wszystkich układach inercjalnych poruszających się względem siebie ruchem jednostajnym. Mamy prawa, lecz nie znamy układu, do którego można by je odnieść.
Aby sobie lepiej zdać sprawę z tej trudności, przeprowadźmy wywiad z przedstawicielem fizyki klasycznej, zadając mu kilka prostych pytań:

  • Co to jest układ inercjalny?
  • Jest to układ, w którym obowiązują prawa mechaniki. W takim u. w. ciało, na które nie działają siły zewnętrzne, porusza się ruchem jednostajnym. Własność ta pozwala nam odróżnić inercjalny u. w. od każdego innego.
  • Cóż jednak oznacza powiedzenie, że na ciało nie działają siły?
  • Znaczy to po prostu, że w inercjalnym u. w. ciało to porusza się ruchem jednostajnym.
    Moglibyśmy w tym miejscu powtórzyć pytanie „Co to jest inercjalny u. w.? Ponieważ jednak nie ma wielkiej nadziei na uzyskanie odpowiedzi innej niż wyżej przytoczona, spróbujmy zdobyć trochę konkretnych informacji, zmieniając pytanie:
  • Czy u. w. związany sztywno z Ziemią jest inercjalny?
  • Nie, gdyż prawa mechaniki nie obowiązują w nim ściśle, a to ze względu na obrót Ziemi. W wielu zagadnieniach można za inercjalny u. w. uważać układ związany sztywno ze Słońcem; gdy jednak mówimy o wirującym Słońcu, wówczas związanego z nim u. w. również nie można uważać za ściśle inercjalny.
  • Czym więc właściwie jest twój inercjalny u. w. i jaki ruch należy mu przypisać?
  • Jest to po prostu pożyteczna fikcja i nie mam pojęcia, jak ją urzeczywistnić. Gdybym się tylko potrafił dostatecznie oddalić od wszystkich ciał materialnych i uwolnić od wszelkich wpływów zewnętrznych, mój u. w. byłby wówczas inercjalny.
  • Ale co rozumiesz przez u. w. wolny od wszelkich wpływów zewnętrznych?
  • Rozumiem przez to, że u. w. jest inercjalny.

Znów powróciliśmy do pytania wyjściowego!
Wywiad nasz ujawnia poważną trudność fizyki klasycznej. Mamy prawa, ale nie wiemy, w jakim układzie je stosować, a cały nasz gmach fizyki przypomina zamki na lodzie.

Do tej samej trudności możemy podejść z innego punktu widzenia. Spróbujmy sobie wyobrazić, że w całym wszechświecie istnieje tylko jedno ciało stanowiące nasz u. w. Ciało to zaczyna wirować. Według mechaniki klasycznej prawa fizyki są inne dla ciała wirującego niż dla nie wirującego. Jeśli zasada bezwładności obowiązuje w jednym wypadku, to nie obowiązuje w drugim. Wszystko to jednak brzmi bardzo podejrzanie. Czy wolno rozważać ruch jednego tylko ciała w całym wszechświecie - Przez ruch ciała rozumiemy zawsze zmianę jego położenia w stosunku do innego ciała. Toteż mówienie o ruchu tylko jednego ciała jest sprzeczne ze zdrowym rozsądkiem. Zachodzi tu wyraźna sprzeczność między mechaniką klasyczną a zdrowym rozsądkiem. Recepta Newtona brzmi: jeżeli obowiązuje zasada bezwładności, to u. w. albo pozostaje w spoczynku, albo porusza się ruchem jednostajnym. Jeżeli zasada bezwładności nie obowiązuje, to ciało porusza się ruchem niejednostajnym. Tak więc stwierdzenie ruchu lub spoczynku zależy od tego, czy w danym u. w. można stosować wszystkie prawa fizyki, czy też nie.

Weźmy dwa ciała, na przykład Ziemię i Słońce. Ruch, który obserwujemy, jest i tym razem względny. Można go opisać, wiążąc u. w. bądź z Ziemią, bądź też ze Słońcem. Z tego punktu widzenia wielkie dzieło Kopernika polega na przeniesieniu u. w. z Ziemi na Słońce. Ponieważ jednak ruch jest względny i możemy się posługiwać dowolnym układem odniesienia, nie ma chyba powodu, aby uważać jeden u. w. za korzystniejszy od drugiego.

I tu znów wkracza fizyka, zmieniając nasz dotychczasowy, zdroworozsądkowy sposób myślenia. U. w. związany ze Słońcem bardziej przypomina układ inercjalny niż u. w. związany z Ziemią. Prawa fizyki powinno się stosować w układzie Kopernika, a nie Ptolemeusza. Wielkość odkrycia Kopernika można ocenić tylko z punktu widzenia fizyki. Wskazuje ono na wielką korzyść, jaka wynika ze stosowania do opisu ruchu planet u. w. sztywno związanego ze Słońcem.

W fizyce klasycznej nie istnieje bezwzględny ruch jednostajny. Jeżeli dwa u. w. poruszają się względem siebie, to powiedzenie: "Ten u. w. spoczywa, a ten się porusza" nie ma sensu. Jeśli jednak dwa u. w. poruszają się względem siebie niejednostajnie, wówczas powiedzenie: "To ciało porusza się, a to spoczywa (lub się porusza ruchem jednostajnym)" jest zupełnie uzasadnione. Ruch bezwzględny ma teraz zupełnie określone znaczenie. Powstaje tu głęboka przepaść między zdrowym rozsądkiem a fizyką klasyczną. Obie wspomniane trudności -kwestia układu inercjalnego oraz kwestia ruchu bezwzględnego- są ze sobą ściśle związane. Ruch bezwzględny możliwy jest tylko dzięki koncepcji układu inercjalnego, w którym obowiązują prawa przyrody.

Mogłoby się wydawać, że z tych trudności nie ma wyjścia, że nie może ich uniknąć żadna teoria fizyczna. Wynikają one z tego, że prawa przyrody obowiązują tylko w szczególnej klasie u. w., tylko w układach inercjalnych. Możliwość przezwyciężenia tej trudności zależy od odpowiedzi na następujące pytanie:Czy można tak sformułować prawa fizyki, aby obowiązywały one we wszystkich u. w., nie tylko w tych, które się poruszają ruchem jednostajnym, ale również w tych, które się względem siebie poruszają zupełnie dowolnie- Jeśli się okaże, że tak jest, to będzie to oznaczało koniec naszych trudności. Prawa przyrody będzie można stosować w dowolnym u. w. Walka między poglądami Ptolemeusza i Kopernika, tak zawzięta w zaraniu nauk przyrodniczych, okazałaby się zupełnie bezprzedmiotowa, gdyż można używać z równym powodzeniem każdego z obu układów. Dwa zdania "Słońce spoczywa, a Ziemia się porusza" oraz "Słońce się porusza, a Ziemia spoczywa" oznaczałyby po prostu dwie różne umowy dotyczące dwóch różnych u. w.

Czy można zbudować prawdziwie relatywistyczną fizykę, która by obowiązywała we wszystkich u. w., fizykę, w której nie byłoby miejsca na ruch bezwzględny, a tylko na względny - Otóż jest to możliwe!

Mamy przynajmniej jedną, choć bardzo ogólnikową wskazówkę, jak tę nową fizykę budować. Prawdziwie relatywistyczna fizyka musi obowiązywać we wszystkich u. w., a więc również w szczególnym przypadku układu inercjalnego. Znamy już prawa, które obowiązują w inercjalnym u. w. Nowe, ogólne prawa, obowiązujące we wszystkich u. w., muszą w szczególnym przypadku układu inercjalnego sprowadzać się do starych, znanych praw.

Zagadnienie sformułowania praw fizyki tak, by obowiązywały one w dowolnym u. w., zostało rozwiązane przez tak zwaną ogólną teorię względności; poprzednia teoria, dotycząca tylko układów inercjalnych, nazywa się szczególną teorią względności. Oczywiście obie te teorie nie mogą być ze sobą sprzeczne, gdyż stare prawa szczególnej teorii względności muszą się zawierać w ogólnych prawach zastosowanych do układu inercjalnego. O ile jednak poprzednio inercjalny u. w. był jedynym, dla którego formułowano prawa fizyki, o tyle teraz będzie on stanowił szczególny przypadek graniczny, gdyż dozwolone są wszystkie u. w., poruszające się względem siebie w dowolny sposób.

Mamy więc program dla ogólnej teorii względności. Ale szkicując drogę jego realizacji, będziemy zmuszeni wyrażać się jeszcze mniej jasno niż dotychczas. Nowe trudności wyłaniające się w miarę rozwoju nauki sprawiają, że nasza teoria staje się coraz bardziej abstrakcyjna. Wciąż jeszcze oczekują nas niespodziewane przygody, ale naszym celem ostatecznym jest zawsze lepsze zrozumienie rzeczywistości. Łańcuch logiczny łączący teorię z doświadczeniem zostaje wzbogacony o nowe ogniwa. Aby drogę wiodącą od teorii do doświadczenia oczyścić ze zbędnych i sztucznych założeń, aby ogarniać coraz szerszy zakres faktów, musimy nasz łańcuch coraz bardziej wydłużać. Im prostsze, im bardziej podstawowe stają się nasze założenia, tym bardziej komplikuje się matematyczne narzędzie rozumowania; droga od teorii do doświadczenia staje się dłuższa, subtelniejsza i bardziej zawiła. Choć brzmi to paradoksalnie, jednak można powiedzieć, że fizyka współczesna jest prostsza od starej fizyki i dlatego wydaje się trudniejsza i bardziej złożona. Im prostszy jest nasz obraz świata zewnętrznego, im więcej ogarnia faktów, tym wyraźniej odbija w naszych umysłach harmonię wszechświata.

Nasza nowa idea jest prosta: chcemy zbudować fizykę, obowiązującą we wszystkich u. w. Realizacja tej idei pociąga za sobą trudności formalne i zmusza nas do korzystania z narzędzi matematycznych innych niż te, którymi posługiwano się dotąd w fizyce. Pokażemy tu tylko związek między realizacją tego programu a dwoma podstawowymi zagadnieniami: grawitacją i geometrią.